Tag Archives: rubber shaft coupling

China Good quality Chain Coupling High Quality Rubber Shaft Tyre Flexible Coupling for Mechanical Equipment

Product Description

Chain Coupling high quality Rubber Shaft Tyre flexible Coupling For mechanical equipment

Product Description

Chain coupling: It comprises 2 sprockets, 1 double-row chain, and a yellow shell.

The chain coupling comprises a double-row roller chain and a pair of connecting sprockets. The connection and disassembly functions are completed through the joint of the chain. Our own factory with quality assurance produces the sprocket. Our couplings are characterized by compact structure, sturdiness, durability, safety, and easy installation.

Detailed Photos

 

Product Parameters

SIZE BORE Pilot A d O L I S B C BOLT TORQUE ARM(Nm) SPEED(rpm) (kg.cm2) WEIGHT
(kg)
3012 12-16 12 69 25 45 64.8 29.8 5.2 63 10.2 6M 190 5000 3.7 0.4
4012 12-22 12 77 33 62 79.4 36 7.4 72 14.4 6M 249 4800 5.5 0.8
4014 12-28 12 84 43 69 79.4 36 7.4 75 14.4 6M 329 4800 9.7 1.1
4016 14-32 14 92 48 77 87.4 40 7.4 75 14.4 6M 429 4800 14.4 1.4
5014 15-35 14 101 53 86 99.7 45 9.7 85 18.1 8M 620 3600 28 2.2
5016 16-40 16 111 60 93 99.7 45 9.7 85 18.1 8M 791 3600 37 2.7
5018 16-45 16 122 70 106 99.7 45 9.7 85 18.1 8M 979 3000 56.3 3.8
6018 20-56 20 142 85 127 123.5 56 11.5 105 22.8 10M 1810 2500 137.3 6.2
6571 20-60 20 158 98 139 123.5 56 11.5 105 22.8 10M 2210 2500 210.2 7.8
6571 20-71 20 168 110 151 123.5 56 11.5 117 22.8 10M 2610 2500 295 10.4
8018 20-80 20 190 110 169 141.2 63 15.2 129 29.3 12M 3920 2000 520 12.7
8571 20-90 20 210 121 185 145.2 65 15.2 137 29.3 12M 4800 2000 812.4 16
8571 20-100 20 226 140 202 157.2 71 15.2 137 29.3 12M 5640 1800 1110 20.2
1571 25-110 25 281 160 233 178.8 80 18.8 153 35.8 12M 8400 1800 2440 33
12018 35-125 35 307 170 256 202.7 90 22.7 181 45.4 12M 12700 1500 3940 47
12571 35-140 35 357 210 304 222.7 100 22.7 181 45.5 12M 18300 1250 7810 72
16018 63-160 35 375 228 340 254.1 112 30.1 240 58.5 16M 26400 1100 14530 108
16571 80-200 70 440 279 405 310.1 140 30.1 245 58.5 16M 37100 1000 32220 187
20018 82-205 75 465 289 425 437.5 200 37.5 285 71.6 20M 54100 800 50980 286
20571 100-255 90 545 263 506 477.5 220 37.5 300 71.6 20M 77800 600 111100 440
24571 120-310 110 650 448 607 650 302.5 45 340 87.8 20M 137000 600 310000 869
24026 150-360 140 745 526 704 700 327.5 45 350 87.8 20M 186000 500 598500 1260

 

Related Products

 

 

Company Profile

 

FAQ

Q: Can you make the coupling with customization?

A: Yes, we can customize per your request.

Q: Do you provide samples?
A: Yes. The sample is available for testing.

Q: What is your MOQ?
A: It is 10pcs for the beginning of our business.

Q: What’s your lead time?
A: Standard products need 5-30days, a bit longer for customized products.

Q: Do you provide technical support?
A: Yes. Our company has a design and development team, and we can provide technical support if you
need.

Q: How to ship to us?
A: It is available by air, sea, or by train.

Q: How to pay the money?
A: T/T and L/C are preferred, with different currencies, including USD, EUR, RMB, etc.

Q: How can I know if the product is suitable for me?
A: >1ST confirm drawing and specification >2nd test sample >3rd start mass production.

Q: Can I come to your company to visit?
A: Yes, you are welcome to visit us at any time.

Q: How shall we contact you?
A: You can send an inquiry directly, and we will respond within 24 hours.

chain coupling

Can chain couplings transmit both torque and linear motion?

No, chain couplings are primarily designed to transmit torque between rotating shafts and are not intended for transmitting linear motion. The main function of a chain coupling is to connect two shafts in order to transfer rotational power from one shaft to another.

Chain couplings achieve torque transmission through the engagement of the roller chain with the sprockets on the connected shafts. As the driving sprocket rotates, it imparts rotational motion to the chain, which in turn rotates the driven sprocket connected to the other shaft. This mechanism allows the torque to be transmitted from one shaft to the other.

However, chain couplings do not provide a means for converting or transmitting linear motion. They are not designed to handle axial displacement or linear forces. Attempting to use a chain coupling for transmitting linear motion would result in inefficient and unreliable operation, as the coupling is not designed to handle the specific requirements and forces associated with linear motion.

For applications that require the transmission of linear motion, there are other types of couplings specifically designed for this purpose. Examples include rack and pinion systems, linear couplings, or specialized linear motion couplings that incorporate mechanisms such as ball screws or lead screws. These couplings are designed to convert rotary motion into linear motion or to transmit linear forces directly.

It is important to select the appropriate coupling type based on the specific requirements of the application, whether it involves torque transmission or the transmission of linear motion. Consulting the manufacturer’s specifications, guidelines, or seeking expert advice can help ensure the correct coupling selection for a particular application.

chain coupling

What are the maintenance requirements for chain couplings?

Maintaining chain couplings is essential for their reliable and efficient operation over time. Regular maintenance helps prevent premature wear, reduces the risk of unexpected failures, and prolongs the lifespan of the coupling. Here are some key maintenance requirements for chain couplings:

  • Lubrication: Proper lubrication is crucial for the smooth operation of chain couplings. Regularly lubricate the roller chain and sprockets with the recommended lubricant. Follow the manufacturer’s guidelines regarding the type of lubricant to use and the frequency of lubrication. Lubrication helps reduce friction, wear, and noise, and it extends the service life of the coupling.
  • Inspection: Regularly inspect the chain coupling for signs of wear, damage, or misalignment. Check the sprockets, roller chain, connecting pins, and bushings or bearings for any abnormalities. Look for worn teeth, elongation of the roller chain, loose or missing fasteners, and excessive play in the coupling. Address any issues promptly to prevent further damage and ensure the coupling’s proper functioning.
  • Tension Adjustment: Check the tension of the roller chain regularly. Improper chain tension can lead to premature wear and affect the coupling’s performance. Follow the manufacturer’s guidelines for the correct chain tension and make adjustments as necessary. Proper tension ensures optimal power transmission and helps accommodate misalignments.
  • Alignment: Monitor the alignment of the shafts connected by the chain coupling. Misalignment can cause excessive stress on the coupling components and lead to premature failure. If misalignment is detected, take the necessary corrective measures, such as realigning the shafts or using alignment tools. Proper alignment promotes smooth operation and prolongs the life of the coupling.
  • Contamination Control: Protect the chain coupling from contamination by keeping the surrounding area clean. Dust, dirt, debris, and moisture can affect the coupling’s performance and accelerate wear. Use appropriate covers or guards to shield the coupling from external contaminants. Regularly clean the coupling and remove any debris that may have accumulated.
  • Periodic Replacement: Over time, the components of a chain coupling can experience wear and fatigue. Periodically replace worn or damaged components, such as sprockets, roller chains, connecting pins, and bushings or bearings, with new ones. Follow the manufacturer’s recommended maintenance schedule for component replacement to ensure the coupling’s reliability and prevent unexpected failures.
  • Documentation: Maintain proper documentation of the maintenance activities performed on the chain coupling. Keep records of lubrication schedules, inspections, adjustments, and component replacements. This documentation helps track the maintenance history of the coupling and provides valuable information for future reference and troubleshooting.

By following these maintenance requirements, you can ensure the optimal performance, longevity, and reliability of your chain coupling. Regular maintenance minimizes the risk of unexpected downtime, reduces repair costs, and maximizes the efficiency of your machinery or equipment.

chain coupling

What are the different types of chain couplings available?

Chain couplings come in various designs and configurations to suit different application requirements. Here are some common types of chain couplings:

  • Standard Roller Chain Couplings: These are the most basic and widely used type of chain couplings. They consist of two sprockets connected by a roller chain. The sprockets have hardened teeth that engage with the chain rollers, providing a reliable power transmission. Standard roller chain couplings are generally suitable for applications with moderate torque and speed requirements.
  • Double Roller Chain Couplings: Double roller chain couplings are similar to standard roller chain couplings but feature two parallel roller chains instead of one. This design increases the torque capacity and allows for higher power transmission. Double roller chain couplings are often used in applications that require higher torque and increased load-bearing capabilities.
  • Silent Chain Couplings: Silent chain couplings, also known as inverted-tooth chain couplings, use a special toothed chain with a meshing sprocket design. The teeth of the chain engage with the sprocket grooves, providing a smooth and quiet operation. Silent chain couplings are commonly used in applications where noise reduction is important, such as precision machinery or equipment operating in noise-sensitive environments.
  • Heavy-Duty Chain Couplings: Heavy-duty chain couplings are designed for applications that demand robust and rugged performance. They are constructed with larger sprockets and heavy-duty roller chains to handle high torque and heavy loads. These couplings are commonly used in industries such as mining, steel, and paper manufacturing, where extreme operating conditions and heavy machinery are present.
  • Flexible Chain Couplings: Flexible chain couplings incorporate an elastomeric element, such as a rubber or polyurethane insert, between the sprockets and the chain. This element provides flexibility, damping, and some degree of misalignment compensation. Flexible chain couplings are suitable for applications that require shock absorption, vibration damping, and moderate misalignment tolerance.
  • Stainless Steel Chain Couplings: Stainless steel chain couplings are specifically designed for applications that require corrosion resistance and sanitation, such as food processing, pharmaceutical, and chemical industries. They are made of stainless steel or other non-corrosive materials to withstand harsh environments and maintain hygienic conditions.

These are just a few examples of the different types of chain couplings available. Each type has its own advantages and is suitable for specific application requirements. It is important to carefully consider the torque, speed, misalignment, environmental factors, and other application-specific needs when selecting the appropriate chain coupling type for your particular application.

China Good quality Chain Coupling High Quality Rubber Shaft Tyre Flexible Coupling for Mechanical Equipment  China Good quality Chain Coupling High Quality Rubber Shaft Tyre Flexible Coupling for Mechanical Equipment
editor by CX 2023-12-14

China Hot selling Stainless Steel Coupling Gear Rigid Roller Chain Fluid Tyre Grid Jaw Spider HRC Nm Motor Flange Gear Pump Rubber Spline Shaft Flexible Universal Joint Coupling

Product Description

Stainless Steel Coupling Gear Rigid Roller Chain Fluid Tyre Grid Jaw Spider HRC Nm Motor Flange Gear Pump Rubber Spline Shaft Flexible Universal Joint Coupling

Product Description

Main products
Coupling refers to a device that connects 2 shafts or shafts and rotating parts, rotates together during the transmission of motion and power, and does not disengage under normal conditions. Sometimes it is also used as a safety device to prevent the connected parts from bearing excessive load, which plays the role of overload protection.

Couplings can be divided into rigid couplings and flexible couplings.
Rigid couplings do not have buffering property and the ability to compensate the relative displacement of 2 axes. It is required that the 2 axes be strictly aligned. However, such couplings are simple in structure, low in manufacturing cost, convenient in assembly and disassembly, and maintenance, which can ensure that the 2 axes are relatively neutral, have large transmission torque, and are widely used. Commonly used are flange coupling, sleeve coupling and jacket coupling.
Flexible coupling can also be divided into flexible coupling without elastic element and flexible coupling with elastic element. The former type only has the ability to compensate the relative displacement of 2 axes, but cannot cushion and reduce vibration. Common types include slider coupling, gear coupling, universal coupling and chain coupling; The latter type contains elastic elements. In addition to the ability to compensate the relative displacement of 2 axes, it also has the functions of buffering and vibration reduction. However, due to the strength of elastic elements, the transmitted torque is generally inferior to that of flexible couplings without elastic elements. Common types include elastic sleeve pin couplings, elastic pin couplings, quincunx couplings, tire type couplings, serpentine spring couplings, spring couplings, etc

Coupling performance

1) Mobility. The movability of the coupling refers to the ability to compensate the relative displacement of 2 rotating components. Factors such as manufacturing and installation errors between connected components, temperature changes during operation and deformation under load all put CHINAMFG requirements for mobility. The movable performance compensates or alleviates the additional load between shafts, bearings, couplings and other components caused by the relative displacement between rotating components.
(2) Buffering. For the occasions where the load is often started or the working load changes, the coupling shall be equipped with elastic elements that play the role of cushioning and vibration reduction to protect the prime mover and the working machine from little or no damage.
(3) Safe, reliable, with sufficient strength and service life.
(4) Simple structure, easy to assemble, disassemble and maintain.

How to select the appropriate coupling type

The following items should be considered when selecting the coupling type.
1. The size and nature of the required transmission torque, the requirements for buffering and damping functions, and whether resonance may occur.
2. The relative displacement of the axes of the 2 shafts is caused by manufacturing and assembly errors, shaft load and thermal expansion deformation, and relative movement between components.
3. Permissible overall dimensions and installation methods, and necessary operating space for assembly, adjustment and maintenance. For large couplings, they should be able to be disassembled without axial movement of the shaft.
In addition, the working environment, service life, lubrication, sealing, economy and other conditions should also be considered, and a suitable coupling type should be selected by referring to the characteristics of various couplings.

If you cannot determine the type, you can contact our professional engineer

Related products

 

Company Profile

 

Our Equipments

Main production equipment:
Large lathe, surface grinder, milling machine, gear shaper, spline milling machine, horizontal broaching machine, gear hobbing machine, shaper, slotting machine, bench drilling machine, radial drilling machine, boring machine, band sawing machine, horizontal lathe, end milling machine, crankshaft grinder, CNC milling machine, casting equipment, etc.
Inspection equipment:
Dynamic balance tester, high-speed intelligent carbon and sulfur analyzer, Blochon optical hardness tester, Leeb hardness tester, magnetic yoke flaw detector, special detection, modular fixture (self-made), etc.

Machining equipments
Heat equipment

 

Our Factory
Application – Photos from our partner customers

Company Profile
Our leading products are mechanical transmission basic parts – couplings, mainly including universal couplings, drum gear couplings, elastic couplings and other 3 categories of more than 30 series of varieties. It is widely used in metallurgical steel rolling, wind power, hydropower, mining, engineering machinery, petrochemical, lifting, paper making, rubber, rail transit, shipbuilding and marine engineering and other industries.
Our factory takes the basic parts of national standards as the benchmark, has more than 40 years of coupling production experience, takes “scientific management, pioneering and innovation, ensuring quality and customer satisfaction” as the quality policy, and aims to continuously provide users with satisfactory products and services. The production is guided by reasonable process, and the ISO9001:2015 quality management system standard is strictly implemented. We adhere to the principle of continuous improvement and innovation of coupling products. In recent years, it has successfully developed 10 national patent products such as SWF cross shaft universal coupling, among which the double cross shaft universal joint has won the national invention patent, SWF cross shaft universal coupling has won the new product award of China’s general mechanical parts coupling industry and the ZHangZhoug Province new product science and technology project.
Our factory has strong technical force, excellent process equipment, complete professional production equipment, perfect detection means, excellent after-sales service, various products and complete specifications. At the same time, we can provide the design and manufacturing of special non-standard products according to the needs of users. Our products sell well at home and abroad, and are trusted by the majority of users. We sincerely welcome friends from all walks of life at home and abroad to visit and negotiate for common development.p

 

chain coupling

Can chain couplings accommodate parallel misalignment?

Yes, chain couplings are designed to accommodate a certain degree of parallel misalignment between the connected shafts. Parallel misalignment refers to the situation where the axes of the two shafts are not perfectly aligned and run parallel to each other but at a distance.

Chain couplings have some inherent flexibility that allows them to tolerate a certain amount of parallel misalignment. The flexibility is primarily provided by the roller chain, which can compensate for small parallel displacements between the shafts. This flexibility helps to reduce stress on the coupling components and allows for smooth operation even in the presence of parallel misalignment.

However, it is important to note that chain couplings have limitations in terms of parallel misalignment. Excessive parallel misalignment beyond the specified limits can lead to increased stress, uneven load distribution, accelerated wear, and potential coupling failure. The manufacturer’s specifications and guidelines should be followed to ensure that the parallel misalignment remains within the acceptable range for the specific chain coupling being used.

Proper alignment during installation is crucial to minimize parallel misalignment. The shafts should be aligned as closely as possible to ensure optimal performance and longevity of the chain coupling and the connected machinery or equipment. In some cases, additional measures such as shims or adjustable mounts may be necessary to achieve the desired alignment.

Regular inspection and maintenance of the chain coupling are also important to identify and address any parallel misalignment issues that may arise over time. If significant parallel misalignment is detected, corrective measures should be taken to realign the shafts or consider alternative coupling options that are better suited for parallel misalignment requirements.

In summary, chain couplings can accommodate a certain degree of parallel misalignment, but excessive misalignment should be avoided. Proper alignment during installation and adherence to manufacturer’s guidelines are essential for ensuring optimal performance, reliability, and longevity of the chain coupling and the connected machinery or equipment.

chain coupling

What are the key components of a chain coupling?

A chain coupling consists of several key components that work together to transmit power and accommodate misalignments. Here are the main components of a chain coupling:

  • Sprockets: Sprockets are the toothed wheels that engage with the chain. They are typically made of steel or other durable materials and have specially designed teeth that mesh with the chain rollers. The sprockets provide the driving and driven connections, transmitting torque from one shaft to another.
  • Roller Chain: The roller chain is a series of interconnected links with rollers between them. It is looped around the sprockets, with the rollers engaging with the sprocket teeth. The roller chain transfers the rotational motion from the driving sprocket to the driven sprocket, allowing power transmission between the shafts.
  • Connecting Pins: Connecting pins are used to join the links of the roller chain together, forming a continuous loop. These pins are inserted through the pin holes in the chain links and secured with retaining clips or other fasteners. They ensure the integrity and strength of the chain.
  • Bushings or Bearings: Bushings or bearings are used to support the shafts and allow them to rotate smoothly within the chain coupling. They are typically inserted into the bores of the sprockets and provide a low-friction interface between the shaft and the coupling components.
  • Guard or Cover: In some chain couplings, a guard or cover is added to enclose the sprockets and chain. This serves as a protective barrier, preventing contact with moving parts and reducing the risk of accidents or injuries. The guard or cover also helps to contain lubrication and protect the chain from contaminants.
  • Lubrication: Lubrication is essential for the smooth operation and longevity of a chain coupling. Proper lubrication reduces friction, wear, and noise. Lubricants, such as chain oil or grease, are applied to the chain and sprockets to minimize frictional losses and prevent premature wear.

These components work together to provide a reliable and efficient power transmission in chain couplings. The sprockets engage with the roller chain, and as one sprocket rotates, it drives the chain, causing the other sprocket and the connected shaft to rotate. The roller chain and its components, along with lubrication, allow for flexibility and compensation of misalignment between the shafts.

chain coupling

How to select the right chain coupling for a specific application?

Choosing the appropriate chain coupling for a specific application involves considering various factors to ensure optimal performance and reliable power transmission. Here are some key steps to guide you in the selection process:

  1. Identify Application Requirements: Begin by understanding the specific requirements of the application. Consider factors such as the torque load, speed, misalignment conditions (angular, parallel, axial), and environmental conditions (temperature, moisture, presence of corrosive substances).

  2. Determine Torque and Speed Requirements: Calculate or estimate the torque and speed requirements of the application. This information is crucial in selecting a chain coupling that can handle the transmitted torque and operate effectively at the required speed range.

  3. Evaluate Misalignment Compensation: Assess the expected misalignment conditions in the application. Determine the magnitude of angular, parallel, and axial misalignments that the chain coupling needs to tolerate. This will help in selecting a coupling design that can accommodate the anticipated misalignment without compromising performance or causing excessive stress on the machinery.

  4. Consider Space Limitations: Evaluate the available space for the chain coupling. Measure the shaft-to-shaft distance and ensure that the selected coupling can fit within the available space without interference with other components or structures.

  5. Assess Environmental Factors: Take into account the environmental conditions in which the chain coupling will operate. Consider factors such as temperature extremes, humidity, presence of dust or debris, and exposure to corrosive substances. Choose a chain coupling that is designed to withstand these conditions and is made from materials that offer adequate corrosion resistance.

  6. Consult Manufacturer Specifications: Review the specifications and technical information provided by reputable chain coupling manufacturers. Pay attention to factors such as torque ratings, speed limits, misalignment capabilities, material compatibility, and recommended maintenance practices.

  7. Consider Maintenance Requirements: Evaluate the maintenance requirements of the chain coupling. Assess factors such as lubrication needs, ease of inspection, and adjustment procedures. Choose a coupling that aligns with the maintenance capabilities and resources available in your application.

  8. Seek Expert Advice if Needed: If you are uncertain about the selection process or have specific application requirements that need expert guidance, consult with knowledgeable engineers or technical representatives from the coupling manufacturer. They can provide valuable insights and recommendations based on their expertise and experience.

By following these steps and considering the specific application requirements, you can select the right chain coupling that meets the torque, speed, misalignment, space, and environmental demands of your application. Proper selection will ensure efficient power transmission, reliable operation, and extended lifespan of the chain coupling.

China Hot selling Stainless Steel Coupling Gear Rigid Roller Chain Fluid Tyre Grid Jaw Spider HRC Nm Motor Flange Gear Pump Rubber Spline Shaft Flexible Universal Joint Coupling  China Hot selling Stainless Steel Coupling Gear Rigid Roller Chain Fluid Tyre Grid Jaw Spider HRC Nm Motor Flange Gear Pump Rubber Spline Shaft Flexible Universal Joint Coupling
editor by CX 2023-10-23

China wholesaler Stainless Steel Coupling Gear Rigid Roller Chain Fluid Tyre Grid Jaw Spider HRC Nm Motor Flange Gear Pump Rubber Spline Shaft Flexible Universal Joint Coupling

Product Description

High Demand Custom Aluminum Precise Milling Spare Lathe Machining Cnc Machine Parts

Product Description

1. Precision CNC machining parts strictly follow customers’ drawing, packing, and quality requirements.
2. Tolerance: between+/-0.01mm;
3. The high-tech CMM inspector to ensure the quality;
4. Full-Experienced engineers and well professional trained workers;
5. Fast delivery time;
6. Professional advice for our customers; 

Detailed Photos

 

Product Parameters

Our advantage of cnc machining:

Business Type Beyond the Manufacturer and strong organized ability in the industrial
Benefits 1. Deeper industrial experience at CNC machining parts service for more than 10-years,our customer’s requirement is our 1st priority.
2. 2D or 3D files is available;
3. We trust the quality priority and we insist the good quality should be based on the customers’ satisfied;
4. Without any MOQ requirement;
5.Faster delivery time;
6. Customized size and specification /OEM available
7. Near ZheJiang Port

The material

 
 Materials Accept
 
Stainless Steel SS201, SS303, SS304, SS316 etc.
Steel Q235, 20#, 45#,
Brass C36000 ( C26800), C37700 ( HPb59), C38500( HPb58), C27200(CuZn37) , C28000(CuZn40)
Iron 1213, 12L14,1215 etc.
Bronze C51000, C52100, C54400, etc.
Aluminum Al6061, Al6063,AL7075,AL5052 etc
Plastic ABS,POM,PC(Poly-Carbonate),PC+GF,PA(nylon),PA+GF,
PMMA(acrylic)PEEK,PEI etc)

Packaging & Shipping

 

  1. We prefer DHL or TNT express or other air freight between 1kg-100kg.
  2. we prefer sea freight more than 100kg or more than 1CBM
  3. As per customized specifications.

 

Company Profile

About us
HangZhou CHINAMFG Technology Co.,Ltd is located in HangZhou City, ZheJiang  Province, Which closed the ZheJiang .The Emitech Technology is mainly engaged in the CNC Machinery Industrial Service for 15 years. Our Parts are sold to Europe, America, Japan, South Korea and China in various kinds of industrial.At present, Our company has CNC Turning machines and CNC centers and equip with professional quality and testing instruments.We have full OEM Experience from worldwide, providing them with One-stop solutions for a broad range of applications.We look CHINAMFG to cooperating with you!
 

 

Our Advantages

1. Precision CNC machining parts strictly follow customer’s drawing,packing and quality requirement.
2. Tolerance: between+/-0.01mm;
3. The high-tech CMM inspector to ensure the quality;
4. Full-Experienced engineers and well professional trained workers;
5. Fast delivery time;
6. Professional advice for our customers; 

After Sales Service

High Demand Custom Aluminum Precise Milling Spare Lathe Machining Cnc Machine Parts
We usually provide 12 Months repair service. If our duty, we will respond to send the new parts.

Our Service

 

Our Processing CNC center, CNC milling, CNC turning, drilling, grinding, bending, stamping, tapping,
Surface finish Polishing, sandblasting, Zinc-plated, nickel-plated, chrome-plated, silver-plated, gold-plated, imitation gold-plated,
Tolerance 0.05mm~0.1mm
QC System 100% inspection before shipment
Drawing format CAD / PDF/ DWG/ IGS/ STEP
Packaging Plastic bag/Standard package / Carton or Pallet / As per customized specifications
Payment Terms 30 -50%T/T in advance, 70-50% balance before delivery; Pay Pal or Western Union is acceptable.
Trade terms EXW, FOB, CIF, As per the customer’s request
Shipment Terms

1)We prefer DHL or TNT express or other air freight between 1kg-100kg.

2) we prefer sea freight more than 100kg or more than 1CBM
3) As per customized specifications.

Note The CNC machining parts are usually custom-made based on the customer’s drawings and samples. So we need the Down Payment

 

chain coupling

Can chain couplings accommodate parallel misalignment?

Yes, chain couplings are designed to accommodate a certain degree of parallel misalignment between the connected shafts. Parallel misalignment refers to the situation where the axes of the two shafts are not perfectly aligned and run parallel to each other but at a distance.

Chain couplings have some inherent flexibility that allows them to tolerate a certain amount of parallel misalignment. The flexibility is primarily provided by the roller chain, which can compensate for small parallel displacements between the shafts. This flexibility helps to reduce stress on the coupling components and allows for smooth operation even in the presence of parallel misalignment.

However, it is important to note that chain couplings have limitations in terms of parallel misalignment. Excessive parallel misalignment beyond the specified limits can lead to increased stress, uneven load distribution, accelerated wear, and potential coupling failure. The manufacturer’s specifications and guidelines should be followed to ensure that the parallel misalignment remains within the acceptable range for the specific chain coupling being used.

Proper alignment during installation is crucial to minimize parallel misalignment. The shafts should be aligned as closely as possible to ensure optimal performance and longevity of the chain coupling and the connected machinery or equipment. In some cases, additional measures such as shims or adjustable mounts may be necessary to achieve the desired alignment.

Regular inspection and maintenance of the chain coupling are also important to identify and address any parallel misalignment issues that may arise over time. If significant parallel misalignment is detected, corrective measures should be taken to realign the shafts or consider alternative coupling options that are better suited for parallel misalignment requirements.

In summary, chain couplings can accommodate a certain degree of parallel misalignment, but excessive misalignment should be avoided. Proper alignment during installation and adherence to manufacturer’s guidelines are essential for ensuring optimal performance, reliability, and longevity of the chain coupling and the connected machinery or equipment.

chain coupling

What are the key components of a chain coupling?

A chain coupling consists of several key components that work together to transmit power and accommodate misalignments. Here are the main components of a chain coupling:

  • Sprockets: Sprockets are the toothed wheels that engage with the chain. They are typically made of steel or other durable materials and have specially designed teeth that mesh with the chain rollers. The sprockets provide the driving and driven connections, transmitting torque from one shaft to another.
  • Roller Chain: The roller chain is a series of interconnected links with rollers between them. It is looped around the sprockets, with the rollers engaging with the sprocket teeth. The roller chain transfers the rotational motion from the driving sprocket to the driven sprocket, allowing power transmission between the shafts.
  • Connecting Pins: Connecting pins are used to join the links of the roller chain together, forming a continuous loop. These pins are inserted through the pin holes in the chain links and secured with retaining clips or other fasteners. They ensure the integrity and strength of the chain.
  • Bushings or Bearings: Bushings or bearings are used to support the shafts and allow them to rotate smoothly within the chain coupling. They are typically inserted into the bores of the sprockets and provide a low-friction interface between the shaft and the coupling components.
  • Guard or Cover: In some chain couplings, a guard or cover is added to enclose the sprockets and chain. This serves as a protective barrier, preventing contact with moving parts and reducing the risk of accidents or injuries. The guard or cover also helps to contain lubrication and protect the chain from contaminants.
  • Lubrication: Lubrication is essential for the smooth operation and longevity of a chain coupling. Proper lubrication reduces friction, wear, and noise. Lubricants, such as chain oil or grease, are applied to the chain and sprockets to minimize frictional losses and prevent premature wear.

These components work together to provide a reliable and efficient power transmission in chain couplings. The sprockets engage with the roller chain, and as one sprocket rotates, it drives the chain, causing the other sprocket and the connected shaft to rotate. The roller chain and its components, along with lubrication, allow for flexibility and compensation of misalignment between the shafts.

chain coupling

What are the disadvantages of chain couplings?

  • Backlash: Chain couplings can exhibit a certain degree of backlash or play due to the clearances between the chain rollers and the sprocket teeth. This can result in reduced precision and accuracy in applications where precise motion control is required.

  • Noise and Vibration: The engagement between the chain and sprockets can generate noise and vibration during operation. This can be problematic in applications where noise reduction is important or where excessive vibration can affect the performance or integrity of the machinery.

  • Maintenance Requirements: While chain couplings are relatively easy to maintain, they still require regular attention. Lubrication of the chain and sprockets is essential to reduce wear and friction. Additionally, periodic inspection and adjustment of chain tension are necessary to ensure proper operation. Neglecting maintenance tasks can lead to premature wear, decreased efficiency, and potential coupling failure.

  • Space and Weight: Chain couplings occupy a certain amount of space due to the presence of sprockets and the length of the chain. In applications with space constraints, the size of the coupling may limit its usability. Additionally, the weight of the coupling components can be a consideration in applications where weight reduction is important.

  • Limitations in High-Speed Applications: Chain couplings may have limitations in high-speed applications. At high rotational speeds, the centrifugal forces acting on the chain and sprockets can increase, potentially causing stress and reducing the efficiency of the coupling. In such cases, alternative coupling designs, such as gear or flexible shaft couplings, may be more suitable.

  • Wear and Service Life: Like any mechanical component, chain couplings are subject to wear over time. The chain and sprockets can experience gradual wear and elongation, requiring eventual replacement. The service life of a chain coupling depends on factors such as the operating conditions, maintenance practices, and the quality of the components used.

While chain couplings offer several advantages, it is important to consider these disadvantages and evaluate their impact based on the specific application requirements. Proper maintenance, periodic inspection, and careful consideration of design factors can help mitigate these disadvantages and ensure optimal performance and longevity of the chain coupling.

China wholesaler Stainless Steel Coupling Gear Rigid Roller Chain Fluid Tyre Grid Jaw Spider HRC Nm Motor Flange Gear Pump Rubber Spline Shaft Flexible Universal Joint Coupling  China wholesaler Stainless Steel Coupling Gear Rigid Roller Chain Fluid Tyre Grid Jaw Spider HRC Nm Motor Flange Gear Pump Rubber Spline Shaft Flexible Universal Joint Coupling
editor by CX 2023-10-17

China OEM Stainless Gear Roller Chain Drive Power Transmission Parts Connection Tyre Grid Jaw Spider Fan Pump Rubber Round Motor Shaft Price Universal Joint Coupling

Product Description

Stainless Steel Gear Roller Chain Drive Power Transmission Parts Connection Tyre Grid Jaw Spider Fan Pump Rubber Round Motor Shaft Price Universal Joint Coupling
 

Features

 

1. Compact designing, easy installation.
2. Convenient maintenance, small size, and lightweight.4. Absorb the transmission of impact load.
3. Absorb the transmission of impact load.
4. Prevent overload.

We can provide the following couplings:

Rigid coupling Flange coupling Oldham coupling
Chain Coupling HRC Coupling Jaw Coupling
Sleeve or muff coupling Gear coupling Bellow coupling
Split muff coupling Flexible coupling Fluid coupling
Spacer Coupling Nm Coupling MH Coupling
Clamp or split-muff or compression coupling Universal coupling Variable speed coupling
Bushed pin-type coupling Diaphragm coupling Constant speed coupling

Product Description

SIZE N.m r/min
 
D D1 d1 L C n-M kg
FCL90 4 4000 90 35.5 11 28 3 4-M8 1.7
FCL100 10 4000 100 40 11 35.5 3 4-M10 2.3
FCL112 16 4000 112 45 13 40 3 4-M10 2.8
FCL125 25 4000 125 65 50 13 45 3 4-M12 4
FCL140 50 4000 140 71 63 13 50 3 6-M12 5.4
FCL160 110 4000 160 80 15 56 3 8-M12 8
FCL180 157 3500 180 90 15 63 3 8-M12 10.5
FCL200 245 3200 200 100 21 71 4 8-M20 16.2
FCL224 392 2850 224 112 21 80 4 8-M20 21.3
FCL250 618 2550 250 125 25 90 4 8-M24 31.6
FCL280 980 2300 280 140 34 100 4 8-M24 44
FCL315 1568 2050 315 160 41 112 4 10-M24 57.7
FCL355 2450 1800 355 180 60 125 5 8-M30 89.5
FCL400 3920 1600 400 200 60 125 5 10-M30 113
FCL450 6174 1400 450 224 65 140 5 12-M30 145
FCL560 9800 1150 560 250 85 160 5 14-M30 229
FCL630 15680 1000 630 280 95 180 5 18-M30 296

 

Related Products

 

 

Company Profile

FAQ

Q: How to ship the coupling to us?
A: It is available by air, sea, or train.

Q: How to pay the money?
A: T/T and L/C are preferred, with different currencies, including USD, EUR, RMB, etc.

Q: How can I know if the product is suitable for me?
A: >1ST confirm drawing and specification >2nd test sample >3rd start mass production.

Q: Can I come to your company to visit?
A: Yes, you are welcome to visit us at any time.

chain coupling

Can chain couplings transmit both torque and linear motion?

No, chain couplings are primarily designed to transmit torque between rotating shafts and are not intended for transmitting linear motion. The main function of a chain coupling is to connect two shafts in order to transfer rotational power from one shaft to another.

Chain couplings achieve torque transmission through the engagement of the roller chain with the sprockets on the connected shafts. As the driving sprocket rotates, it imparts rotational motion to the chain, which in turn rotates the driven sprocket connected to the other shaft. This mechanism allows the torque to be transmitted from one shaft to the other.

However, chain couplings do not provide a means for converting or transmitting linear motion. They are not designed to handle axial displacement or linear forces. Attempting to use a chain coupling for transmitting linear motion would result in inefficient and unreliable operation, as the coupling is not designed to handle the specific requirements and forces associated with linear motion.

For applications that require the transmission of linear motion, there are other types of couplings specifically designed for this purpose. Examples include rack and pinion systems, linear couplings, or specialized linear motion couplings that incorporate mechanisms such as ball screws or lead screws. These couplings are designed to convert rotary motion into linear motion or to transmit linear forces directly.

It is important to select the appropriate coupling type based on the specific requirements of the application, whether it involves torque transmission or the transmission of linear motion. Consulting the manufacturer’s specifications, guidelines, or seeking expert advice can help ensure the correct coupling selection for a particular application.

chain coupling

What is the maximum torque capacity of a chain coupling?

The maximum torque capacity of a chain coupling can vary depending on several factors, including the size and design of the coupling, the type and quality of the components used, and the application requirements. It is important to refer to the manufacturer’s specifications and guidelines for the specific chain coupling being used. These specifications typically provide the maximum torque capacity or the maximum allowable torque for the coupling.

The maximum torque capacity is usually expressed in torque units, such as Newton-meters (Nm) or foot-pounds (ft-lb). It represents the maximum amount of torque that the chain coupling can transmit without exceeding its design limits or risking premature failure.

When selecting a chain coupling, it is crucial to consider the torque requirements of the application and choose a coupling with a sufficient torque capacity. Factors such as the power requirements, operating conditions, and misalignment tolerance should be taken into account to ensure that the selected coupling can handle the required torque.

It is important to note that exceeding the maximum torque capacity of a chain coupling can lead to various issues, including accelerated wear, excessive stress on the components, and potential coupling failure. Therefore, it is recommended to always operate the chain coupling within its specified torque limits to maintain its reliability and longevity.

For accurate and precise information regarding the maximum torque capacity of a specific chain coupling, it is necessary to consult the manufacturer’s documentation or contact the manufacturer directly. They can provide detailed information based on the specific design and specifications of the coupling.

chain coupling

What is a chain coupling?

A chain coupling is a mechanical device used to connect two rotating shafts in a power transmission system. It consists of two sprockets or toothed wheels and a roller chain that meshes with the sprocket teeth. The sprockets are mounted on the respective shafts and linked together by the chain, allowing torque to be transmitted from one shaft to the other.

Chain couplings are designed to provide a flexible and reliable connection between shafts while accommodating misalignment between them. They are known for their ability to compensate for angular, parallel, and axial misalignments, making them suitable for a wide range of industrial applications.

The sprockets of a chain coupling typically have hardened teeth that engage with the rollers of the chain. The chain itself is made up of a series of interconnected links, each consisting of two plates joined by pins. The rollers are mounted on the pins, allowing them to rotate freely and mesh with the sprocket teeth.

One of the key advantages of chain couplings is their ability to transmit high torque loads. The engagement between the sprockets and the chain provides a positive drive, allowing for efficient power transfer even in demanding applications. Chain couplings are commonly used in heavy-duty machinery and equipment where large amounts of power need to be transferred, such as conveyors, mixers, crushers, and industrial drives.

Chain couplings also offer flexibility in shaft alignment. They can compensate for angular misalignment, which occurs when the shafts are not perfectly aligned at an angle. Additionally, they can accommodate parallel misalignment, where the shafts are offset from each other, as well as axial misalignment, which refers to the displacement along the axis of the shafts.

Proper lubrication is essential for the efficient operation and longevity of chain couplings. Lubricants such as oil or grease are applied to the chain and sprockets to reduce friction and wear. This helps to prevent heat buildup and ensures smooth rotation and power transmission.

Chain couplings are available in various sizes, configurations, and materials to suit different application requirements. The selection of a chain coupling depends on factors such as torque capacity, speed, shaft diameter, and misalignment tolerance.

In summary, chain couplings provide a flexible, reliable, and high-torque solution for connecting rotating shafts in power transmission systems. They offer the ability to compensate for misalignment, making them suitable for a wide range of industrial applications where efficient power transfer is crucial.

China OEM Stainless Gear Roller Chain Drive Power Transmission Parts Connection Tyre Grid Jaw Spider Fan Pump Rubber Round Motor Shaft Price Universal Joint Coupling  China OEM Stainless Gear Roller Chain Drive Power Transmission Parts Connection Tyre Grid Jaw Spider Fan Pump Rubber Round Motor Shaft Price Universal Joint Coupling
editor by CX 2023-08-31

China Custom Rigid Coupling Transmission Parts Couplings Shaft Metal Stainless Steel Tooth Drum Curve Nm Chain Shaft Fexible Type of Rubber Best Manufacturers Rigid Coupling

Product Description

Rigid Coupling Transmission Parts Couplings Shaft Metal Stainless Steel Tooth Drum Curve NM Chain Shaft Fexible Type of Rubber Best Manufacturers Rigid Coupling

Application of Rigid Coupling

Rigid couplings are used to connect 2 shafts that are perfectly aligned. They are made up of 2 flanges, 1 mounted on each shaft. The flanges are then bolted together, which ensures that the shafts are held in place and cannot move relative to each other.

Rigid couplings are used in a wide variety of applications, including:

  • Machine tools: Rigid couplings are used in machine tools to connect the motor to the cutting tool. This allows the cutting tool to operate at a high speed and torque, which is necessary for cutting through tough materials.
  • Wind turbines: Rigid couplings are used in wind turbines to connect the blades to the generator. This allows the generator to generate electricity at a controlled speed and torque, which is necessary for providing power to homes and businesses.
  • Robotics: Rigid couplings are used in robotics to connect the motor to the robot’s joints. This allows the robot to move its joints at a controlled speed and torque, which is necessary for performing tasks such as picking and placing objects.
  • Conveyors: Rigid couplings are used in conveyors to connect the motor to the conveyor belt. This allows the conveyor belt to move at a controlled speed and torque.
  • Mining: Rigid couplings are used in mining equipment, such as crushers, conveyors, and pumps. The coupling allows the equipment to move materials at a controlled speed and torque, which is necessary for mining operations.
  • Construction: Rigid couplings are used in construction equipment, such as excavators, cranes, and loaders. The coupling allows the machinery to move at a controlled speed and torque, which is necessary for construction operations.
  • Aerospace: Rigid couplings are used in aerospace applications, such as jet engines and helicopters. The coupling allows the engines to operate at a controlled speed and torque, which is necessary for flight.

Rigid couplings are a versatile and valuable tool for a variety of applications. They can be used to connect 2 shafts that are perfectly aligned, and they can be used in a wide range of industries.

Here are some of the benefits of using rigid couplings:

  • Increased efficiency: Rigid couplings can help to improve efficiency by reducing friction and vibration.
  • Reduced wear and tear: Rigid couplings can help to reduce wear and tear on the shafts and couplings.
  • Improved safety: Rigid couplings can help to improve safety by preventing shafts from becoming misaligned.
  • Increased versatility: Rigid couplings can be used in a wide range of applications.

If you need to connect 2 shafts that are perfectly aligned, then a rigid coupling may be the right solution for you.

 

chain coupling

Can chain couplings transmit both torque and linear motion?

No, chain couplings are primarily designed to transmit torque between rotating shafts and are not intended for transmitting linear motion. The main function of a chain coupling is to connect two shafts in order to transfer rotational power from one shaft to another.

Chain couplings achieve torque transmission through the engagement of the roller chain with the sprockets on the connected shafts. As the driving sprocket rotates, it imparts rotational motion to the chain, which in turn rotates the driven sprocket connected to the other shaft. This mechanism allows the torque to be transmitted from one shaft to the other.

However, chain couplings do not provide a means for converting or transmitting linear motion. They are not designed to handle axial displacement or linear forces. Attempting to use a chain coupling for transmitting linear motion would result in inefficient and unreliable operation, as the coupling is not designed to handle the specific requirements and forces associated with linear motion.

For applications that require the transmission of linear motion, there are other types of couplings specifically designed for this purpose. Examples include rack and pinion systems, linear couplings, or specialized linear motion couplings that incorporate mechanisms such as ball screws or lead screws. These couplings are designed to convert rotary motion into linear motion or to transmit linear forces directly.

It is important to select the appropriate coupling type based on the specific requirements of the application, whether it involves torque transmission or the transmission of linear motion. Consulting the manufacturer’s specifications, guidelines, or seeking expert advice can help ensure the correct coupling selection for a particular application.

chain coupling

How does misalignment affect chain couplings?

Misalignment in chain couplings can have detrimental effects on their performance and lifespan. Here are some ways in which misalignment can affect chain couplings:

  • Increase in Load: Misalignment puts additional load on the coupling components. When the shafts connected by the coupling are not properly aligned, the coupling must compensate for the angular, parallel, or axial misalignment. This increased load can lead to excessive stress and premature wear on the coupling components, such as sprockets, roller chain, and connecting pins.
  • Uneven Load Distribution: Misalignment can cause an uneven distribution of load across the coupling. As a result, some sections of the coupling experience higher stresses than others. This uneven load distribution can lead to localized wear and fatigue, reducing the overall strength and reliability of the coupling.
  • Reduced Power Transmission: Misalignment affects the efficiency of power transmission through the coupling. When the shafts are not properly aligned, there is increased friction and slippage between the roller chain and the sprockets. This slippage reduces the amount of power transferred from one shaft to another, resulting in a loss of efficiency and a decrease in the overall performance of the machinery or equipment.
  • Increased Wear: Misalignment can accelerate wear on the coupling components. The misalignment causes the roller chain to operate at an angle or with excessive tension, causing additional stress and wear on the chain links, sprocket teeth, and connecting pins. The increased wear can lead to chain elongation, loss of engagement with the sprockets, and ultimately, coupling failure.
  • Noise and Vibration: Misalignment often results in increased noise and vibration during operation. The misaligned coupling generates additional vibrations and impacts, leading to excessive noise and potential damage to the coupling and surrounding equipment. These vibrations can also propagate through the connected machinery, affecting its overall performance and reliability.

To mitigate the negative effects of misalignment, it is crucial to ensure proper alignment of the shafts and the chain coupling during installation and periodically check and adjust the alignment as needed. Proper alignment minimizes stress on the coupling components, maximizes power transmission efficiency, and extends the service life of the chain coupling.

chain coupling

What is a chain coupling?

A chain coupling is a mechanical device used to connect two rotating shafts in a power transmission system. It consists of two sprockets or toothed wheels and a roller chain that meshes with the sprocket teeth. The sprockets are mounted on the respective shafts and linked together by the chain, allowing torque to be transmitted from one shaft to the other.

Chain couplings are designed to provide a flexible and reliable connection between shafts while accommodating misalignment between them. They are known for their ability to compensate for angular, parallel, and axial misalignments, making them suitable for a wide range of industrial applications.

The sprockets of a chain coupling typically have hardened teeth that engage with the rollers of the chain. The chain itself is made up of a series of interconnected links, each consisting of two plates joined by pins. The rollers are mounted on the pins, allowing them to rotate freely and mesh with the sprocket teeth.

One of the key advantages of chain couplings is their ability to transmit high torque loads. The engagement between the sprockets and the chain provides a positive drive, allowing for efficient power transfer even in demanding applications. Chain couplings are commonly used in heavy-duty machinery and equipment where large amounts of power need to be transferred, such as conveyors, mixers, crushers, and industrial drives.

Chain couplings also offer flexibility in shaft alignment. They can compensate for angular misalignment, which occurs when the shafts are not perfectly aligned at an angle. Additionally, they can accommodate parallel misalignment, where the shafts are offset from each other, as well as axial misalignment, which refers to the displacement along the axis of the shafts.

Proper lubrication is essential for the efficient operation and longevity of chain couplings. Lubricants such as oil or grease are applied to the chain and sprockets to reduce friction and wear. This helps to prevent heat buildup and ensures smooth rotation and power transmission.

Chain couplings are available in various sizes, configurations, and materials to suit different application requirements. The selection of a chain coupling depends on factors such as torque capacity, speed, shaft diameter, and misalignment tolerance.

In summary, chain couplings provide a flexible, reliable, and high-torque solution for connecting rotating shafts in power transmission systems. They offer the ability to compensate for misalignment, making them suitable for a wide range of industrial applications where efficient power transfer is crucial.

China Custom Rigid Coupling Transmission Parts Couplings Shaft Metal Stainless Steel Tooth Drum Curve Nm Chain Shaft Fexible Type of Rubber Best Manufacturers Rigid Coupling  China Custom Rigid Coupling Transmission Parts Couplings Shaft Metal Stainless Steel Tooth Drum Curve Nm Chain Shaft Fexible Type of Rubber Best Manufacturers Rigid Coupling
editor by CX 2023-08-21

China Factory Price spider jaw coupling NM112 cast iron Rubber element non-lubricating no maintenance flexible shaft coupling coupling bushing

Error:获取session失败,

gearbox

Types of Couplings

A coupling is a device that connects two shafts together. It transmits power from one end to another and is used for joining rotating equipment. A coupling is flexible and can accommodate a certain amount of end movement and misalignment. This allows for more flexibility in applications. Various types of couplings are available, and each one serves a specific purpose.

Shaft couplings

There are many types of shaft couplings, and they are used in a wide range of applications. The type you need depends on the torque, speed, and horsepower you need, as well as the size of the shaft and its spatial limitations. You may also need to consider whether the coupling will accommodate misalignment.
Some shaft couplings are flexible, while others are rigid. Flexible couplings can accommodate up to two degrees of misalignment. They are available in different materials, including aluminum, stainless steel, and titanium. They can also be known by different names, depending on the industry. Some couplings can also be used in a single or multiple-shaft application.
The first type of shaft coupling is a rigid coupling, which consists of two parts that fit together tightly around the shafts. These couplings are designed to have more flexibility than sleeved models, and they can be used on fixed shafts as well. The flanged coupling, on the other hand, is designed for heavy loads and is made of two perpendicular flanges. The flanges are large enough to accommodate screws and are generally used with heavy-duty applications.
CZPT shaft couplings are a great choice if you’re looking for a shaft coupling that delivers high performance, durability, and low cost. These metal disc-style couplings provide low backlash and high torsional stiffness. Their high misalignment tolerance reduces reaction loads on connected components, which makes them ideal for high-speed precision applications. Available in single and double-disc models, they have torque ratings of up to 2,200 in-lbs. (250N) and are available in fourteen sizes.
When using shaft couplings, it is important to choose the right type for your application. Backlash can cause a shaft coupling to break or become unusable. In order to prevent this from happening, you should replace worn or loose parts, and ensure that the hub and key are evenly positioned with the shaft. If you’re using a shaft coupling in a motion-control system, it is important to keep the torque level consistent.

Flexible couplings

Flexible couplings are a type of coupling used to connect two shafts. They are made of rubber or plastic and allow for axial movement of the connected equipment. They do not require lubrication and are resistant to fatigue failure. Flexible couplings are useful for a number of applications. A common type of flexible coupling is the gear coupling, which has gear teeth inside its sleeve. Another type of flexible coupling is the metallic membrane coupling. A metallic membrane coupling is flexible due to flexing metallic discs.
One major disadvantage of flexible couplings is their inability to fit certain types of pipe. This is because most couplings need to be stretched to fit the pipe. This problem is often the result of a change in pipe technology. Traditionally, drain and soil pipe is made of ductile iron or cast iron. Today, most pipes are made of PVC, which has a larger outside diameter than either cast or ductile iron. Because of these changes in pipe technology, many coupling manufacturers have not updated their mold sizing.
Flexible couplings can be either metallic, elastomeric, or a combination of the three. While there are some common characteristics of each type, you should always consider the tradeoffs of each type before choosing one. Generally, the most important considerations when selecting a flexible coupling are torque, misalignment, and ease of assembly and maintenance.
Flexible couplings are used in a wide range of industries. They are useful for connecting two pipes to ensure torque transfer. Although the types available are different, these are the most adaptable couplings in the market. They can withstand movement, vibration, and bending without causing any damage to the piping.

Clutch couplings

A clutch coupling connects two rotating shafts by friction. The clutch engages power when the engine is running, disengaging power when the brake is applied. Clutch couplings are used in applications where the speed of a machine is variable or where continuous service is required. The clutch can transmit power, torque, and axial force.
Clutch couplings come in a variety of styles and configurations. Some couplings are flexible, while others are rigid. Flexible couplings are available in a variety of materials, including stainless steel and aluminum. Some couplings also have a non-backlash design, which helps compensate for misalignment.
Clutch couplings may be synchronous or asynchronous. Synchronous couplings engage and disengage automatically when the driven machine exceeds its output speed. These couplings are synchronized by a synchronizing mechanism. When the output speed is exceeded, the synchronizing mechanism initiates the engagement process. The synchronizing mechanism does not engage or disengage when the output speed drops.
High speed clutches are available from a variety of manufacturers. Some manufacturers offer OEM assembly, repair services, and third-party logistics. These manufacturers serve the automotive, chemical, food, and wood industries, as well as the oilfield and material handling industries. Custom clutches can be manufactured for specific applications and can be fitted with additional features, such as precision machined teeth or keyway slots and grooves.
Couplings are available in PCE, C/T, and metric bores. Typically, the size of the input and output shafts will determine which type of coupling is needed. In addition, clutches may be configured for intermediate or high speeds, depending on the required torque.

Clamped couplings

Clamped couplings are commonly used in a variety of industries. They can be used in medical equipment, dental equipment, military equipment, laboratory equipment, and in precision industrial controls. They are available in a wide variety of sizes and keyways. This type of coupling offers a number of advantages, including ease of installation and quick and easy replacement.
A clamp coupling connects two parts by compressing them together. The clamping elements can be formed in a variety of ways, but they all have a gap between their surfaces. This friction squeezes the two parts together, much like pulling two rubber gloves apart. This type of coupling is also useful for joining two hoses or piping units.
Clamped couplings are designed with a single or double clamping shaft. The clamping parts are mounted in two halves and are held together by eight socket head cap screws. They offer high torque capacity and require little installation space. Their high rigidity ensures good positioning accuracy, making them ideal for dynamic drives. In addition, they are wear-free and offer simple radial assembly.
The invention relates to a method and system for clamping pipes to a tank vessel. This invention also relates to a method of loading and unloading tank vessels. The method can be used in oil production platforms and other platforms. A single point mooring method is also used in oil production platforms.
Clamped couplings can also be flexible. They can join two shafts together while allowing a small amount of end movement and misalignment. These couplings may also be used in the assembly of motors and gearboxes.
gearbox

CZPT’s coupling

CZPT couplings are designed to be flexible, allowing them to accommodate misaligned shafts and transmit torque in either direction. They are made with three discs, two hubs, and a center that are arranged with grooves and fins. These features allow for two degrees of freedom during assembly, and can accommodate misalignment of up to 5% of the shaft diameter.
CZPT couplings have many uses. For example, they can be used to join two parallel coaxial rotating shafts. Their ability to transmit torque at the same rotation mechanism and speed makes them ideal for applications where electrical currents may be a problem. Because the couplings are not made of metal, they are electrically isolated. Designers should test their couplings during the prototype stage to ensure they are working properly.
The CZPT coupling consists of two hubs with one slot on each. An intermediate disk is located between the two hubs. The discs are used to reduce or prevent wear on other machine parts. CZPT couplings are inexpensive and easy to replace. They also have electrical insulation, which makes them easy to repair or replace.
CZPT couplings are a popular choice for stepper motor-driven positioning stages. The plastic center disc offers electrical isolation and absorbs shocks from frequent start/stops. These couplings are available in through-hub and blind-bore styles and can be installed in many applications.
CZPT couplings also allow for small degrees of shaft misalignment. This allows them to function in systems where shaft access is limited. They are easily removed without tools.
China Factory Price spider jaw coupling NM112 cast iron Rubber element non-lubricating no maintenance flexible shaft coupling     coupling bushingChina Factory Price spider jaw coupling NM112 cast iron Rubber element non-lubricating no maintenance flexible shaft coupling     coupling bushing
editor by CX 2023-04-23

China high quality High Quality Multiple Types/Size Flexible Coupling, Rubber Shaft Coupling with Aluminium Block 205*108 50as Replacement of Many Types of Machine Excavator. coupling bushing

Product Description

High Quality Multiple Types/Size Flexible Coupling, Rubber Shaft Coupling with Aluminium block 205*108 50AS Replacement of Many Types of machine excavator.

Our main products:
steel cover lock, filter, oil grid, pump, cylinder head, crankshaft, camshaft, connecting rod, connecting rod bearing, valve, plunger, nozzle, exhaust valve, engine assembly, intake pump , fan blade, engine preheater, radiator, intake valve, main bearing, crankshaft bearing, nozzle, nozzle pipe, oil pump, piston, piston pin, piston ring, plunger, valve seat, thrust bearing, valve guide, valve Seats, valve seals, gasket sets, water pumps, turbochargers, generators, starters, sensors…

Please click here>>>>Contact us for more factory price,shipping and discounts

ENGINE CUSHION
NO. LB NO. Model OEM NO. Name NO. LB NO. Model OEM NO. Name NO. LB NO. Model OEM NO. Name
1 KLB-Q3001 PC40 105*53*10 ENGINE CUSHION 15 KLB-Q3015 E312
FRONT
95*28*16 ENGINE CUSHION 29 KLB-Q3571 SK230 90*45*21 ENGINE CUSHION
2 KLB-Q3002 PC120-6 4D102 82*46*18 ENGINE CUSHION 16 KLB-Q3016 EX312
REAR
95*29*17 ENGINE CUSHION 30 KLB-Q3030 HD250 59*31*13 ENGINE CUSHION
3 KLB-Q3003 PC200-3 124*68*45
205-01-71111
ENGINE CUSHION 17 KLB-Q3017 ZAX230
FRONT
95*28*16 ENGINE CUSHION 31 KLB-Q3031 HD450
FRONT
97*15*19 ENGINE CUSHION
4 KLB-Q3004 PC200-5/6
FRONT
80*46*19
20Y-01-12210
ENGINE CUSHION 18 KLB-Q3018 E320B 110*40*22 ENGINE CUSHION 32 KLB-Q3032 HD450
REAR
118*36*19 ENGINE CUSHION
5 KLB-Q3005 PC200-5
REAR
130*73*25
20Y-01-12221
ENGINE CUSHION 19 KLB-Q3019 E330B 136*44*25 ENGINE CUSHION 33 KLB-Q3033 LS120 87*42*17 ENGINE CUSHION
6 KLB-Q3006 PC200-6
6D102
20Y-01-12222 ENGINE CUSHION 20 KLB-Q3571 DH220-3
FRONT
68*70*12 ENGINE CUSHION 34 KLB-Q3034 LS280
FRONT
86*23*16 ENGINE CUSHION
7 KLB-Q3007 EX200   ENGINE CUSHION 21 KLB-Q3571 DH220-3
REAR
110*105*14 ENGINE CUSHION 35 KLB-Q3035 LS280
REAR
96*25*16 ENGINE CUSHION
8 KLB-Q3008 EX200-5
REAR
167*110*14 ENGINE CUSHION 22 KLB-Q3571 DH220-5 104*74*19 ENGINE CUSHION 36 KLB-Q3036 SH60
SH65
120*110*12 ENGINE CUSHION
9 KLB-Q3009 EX200-6
REAR
175*135*16 ENGINE CUSHION 23 KLB-Q3571 DH280
FRONT
165*200*16 ENGINE CUSHION 37 KLB-Q3037 6D22
FRONT
70*35*21 ENGINE CUSHION
10 KLB-Q3571 EX200
FRONT
120*155*14 ENGINE CUSHION 24 KLB-Q3571 DH280
REAR
200*110*20 ENGINE CUSHION 38 KLB-Q3038 6D22
REAR
95*41*22 ENGINE CUSHION
11 KLB-Q3011 EX200
REAR
165*105*14 ENGINE CUSHION 25 KLB-Q3571 SK60
FRONT
98*103*12 ENGINE CUSHION 39 KLB-Q3039 DH55
FRONT
100*48*17 ENGINE CUSHION
12 KLB-Q3012 EX200 126*100*11 ENGINE CUSHION 26 KLB-Q3026 SK60
REAR
98*103*16 ENGINE CUSHION 40 KLB-Q3040 SH200A3 137*160*16 ENGINE CUSHION
13 KLB-Q3013 EX300
FRONT
87*35*20 ENGINE CUSHION 27 KLB-Q3571 SK120
FRONT
100*15*19 ENGINE CUSHION          
14 KLB-Q3014 EX300
REAR
110*39*22 ENGINE CUSHION 28 KLB-Q3571 SK120
FEAR
100*47*19 ENGINE CUSHION          

COUPLING
NO. LB NO. Model OEM NO. Name NO. LB NO. Model OEM NO. Name NO. LB NO. Model OEM NO. Name
1 KLB-Q2001   25H  162*92 COUPLING 22 KLB-Q2571 16A 155*76 COUPLING 43 KLB-Q2043 S32S 235*97 COUPLING
2 KLB-Q2002 MS110 DH55 30H 195*105 COUPLING  23 KLB-Q2571 16AS 155*76 COUPLING 44 KLB-Q2044 S25S 163*58 COUPLING
3 KLB-Q2003 30H  195*105 COUPLING ASSY 24 KLB-Q2571 22A 153*76 COUPLING 45 KLB-Q2045 E200B 14T     COUPLING
4 KLB-Q2004 EX200-2 40H 170*90 COUPLING 25 KLB-Q2571 25A 185*102 COUPLING 46 KLB-Q2046 50AC 14T  205*40 COUPLING
5 KLB-Q2005 40H   170*90 COUPLING ASSY 26 KLB-Q2026 25AS 185*102 COUPLING 47 KLB-Q2047 SH280   COUPLING
6 KLB-Q2006 45H  183*92 COUPLING 27 KLB-Q2571 28A 178*93 COUPLING 48 KLB-Q2048 E200B  12T   COUPLING
7 KLB-Q2007 45H 183*92 COUPLING ASSY 28 KLB-Q2571 28AS 178*93 COUPLING 49 KLB-Q2049 50AM  16T 205*45 COUPLING
8 KLB-Q2008 90H  203*107 COUPLING 29 KLB-Q2571 30A 215*118 COUPLING 50 KLB-Q2050 SH200 14T  205*40 COUPLING
9 KLB-Q2009 90H  203*107 COUPLING ASSY 30 KLB-Q2030 30AS 215*118 COUPLING 51 KLB-Q2051 E330C 350*145 COUPLING
10 KLB-Q2571 50H  195*110 COUPLING 31 KLB-Q2031 50A 205*108 COUPLING 52 KLB-Q2052 E330C   COUPLING
11 KLB-Q2011 50H   195*110 COUPLING ASSY 32 KLB-Q2032 50AS  205*108 COUPLING 53 KLB-Q2053 168mm*48m 26T 3H   COUPLING
12 KLB-Q2012 110H  215*110 COUPLING 33 KLB-Q2033 90A 272*140 COUPLING 54 KLB-Q2054 242mm*72mm 50T 8H   COUPLING
13 KLB-Q2013 110H 215*110 COUPLING ASSY 34 KLB-Q2034 90AS 272*140 COUPLING 55 KLB-Q2055 295mm*161mm 48T 12H   COUPLING
14 KLB-Q2014 140H  245*125 COUPLING 35 KLB-Q2035 140A 262*132 COUPLING 56 KLB-Q2056 352mm*161mm 48T 8H   COUPLING
15 KLB-Q2015 140H   245*125 COUPLING ASSY 36 KLB-Q2036 140AS 262*132 COUPLING 57 KLB-Q2057 352mm*161mm 46T 8H   COUPLING
16 KLB-Q2016 160H  255*134 COUPLING 37 KLB-Q2037 E300B  16T  278*54 COUPLING 58 KLB-Q2058 318mm*72mm 50T 8H   COUPLING
17 KLB-Q2017 160H  255*134 COUPLING ASSY 38 KLB-Q2038 E450 16T 360*52 COUPLING 59 KLB-Q2059 315mm 42T   COUPLING
18 KLB-Q2018 4A 104*53 COUPLING 39 KLB-Q2039 SH430   12T  205*35 COUPLING 60 KLB-Q2060 268mm*100mm 42T 6H   COUPLING
19 KLB-Q2019 4AS 104*53 COUPLING 40 KLB-Q2040 SH200 14T  205*40 COUPLING 61 KLB-Q2061 167mm*90mm 47T 3H   COUPLING
20 KLB-Q2571 8A 130*70 COUPLING 41 KLB-Q2041 50ASM  20T  205*40 COUPLING 62 KLB-Q2062 182mm 42T    COUPLING
21 KLB-Q2571 8AS 130*70 COUPLING 42 KLB-Q2042 SH160(SH60)  15T 173*22 COUPLING 63 KLB-Q2063 220mm 46T    COUPLING

1Q:What is your brand?
1A:Our own brand: Mita Group and its range of excavator parts.

2Q:Do you have your own factory? Can we have a visit?
2A:Absolutely, you are alwayswelcome to visit our factory.

3Q:How do you control the quality of the products?
3A:Our factory was obtained the ISO9001CERTIFICATE.Every process of the production is strictly controlled. And all products will be inspected by QC before shipment.

4Q:How long is the delivery time?
4A:2 to 7 days for ex-stock orders. 15 to 30 days for production.

5Q:Can we print our company logo onproduct and package?
5A:Yes, but the quantity of the order is required. And we need you to offer the Trademark Authorization to us.

6Q:Can you provide OEM BRAND package?
6A:Sorry, we can only offer our company ACT BRAND package or neutral packing,blank package ifyou need, and the Buyers’ Brand as authorized.7Q:How long is the warranty period?7A:3 months

Certification: ISO9001
Standard Component: Standard Component
Technics: Casting
Material: Rubber
Type: Coupling
Size: 205*108
Samples:
US$ 20/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

gearbox

What Is a Coupling?

A coupling is a mechanical device that links two shafts together and transmits power. Its purpose is to join rotating equipment while permitting a small amount of misalignment or end movement. Couplings come in a variety of different types and are used in a variety of applications. They can be used in hydraulics, pneumatics, and many other industries.

Types

Coupling is a term used to describe a relationship between different modules. When a module depends on another, it can have different types of coupling. Common coupling occurs when modules share certain overall constraints. When this type of coupling occurs, any changes to the common constraint will also affect the other modules. Common coupling has its advantages and disadvantages. It is difficult to maintain and provides less control over the modules than other types of coupling.
There are many types of coupling, including meshing tooth couplings, pin and bush couplings, and spline couplings. It is important to choose the right coupling type for your specific application to get maximum uptime and long-term reliability. Listed below are the differences between these coupling types.
Rigid couplings have no flexibility, and require good alignment of the shafts and support bearings. They are often used in applications where high torque is required, such as in push-pull machines. These couplings are also useful in applications where the shafts are firmly attached to one another.
Another type of coupling is the split muff coupling. This type is made of cast iron and has two threaded holes. The coupling halves are attached with bolts or studs.
gearbox

Applications

The coupling function is an incredibly versatile mathematical tool that can be used in many different scientific domains. These applications range from physics and mathematics to biology, chemistry, cardio-respiratory physiology, climate science, and electrical engineering. The coupling function can also help to predict the transition from one state to another, as well as describing the functional contributions of subsystems in the system. In some cases, it can even be used to reveal the mechanisms that underlie the functionality of interactions.
The coupling selection process begins with considering the intended use of the coupling. The application parameters must be determined, as well as the operating conditions. For example, if the coupling is required to be used for power transmission, the design engineer should consider how easily the coupling can be installed and serviced. This step is vital because improper installation can result in a more severe misalignment than is specified. Additionally, the coupling must be inspected regularly to ensure that the design parameters remain consistent and that no detrimental factors develop.
Choosing the right coupling for your application is an important process, but it need not be difficult. To find the right coupling, you must consider the type of machine and environment, as well as the torque, rpm, and inertia of the system. By answering these questions, you will be able to select the best coupling for your specific application.
gearbox

Problems

A coupling is a device that connects two rotating shafts to transfer torque and rotary motion. To achieve optimal performance, a coupling must be designed for the application requirements it serves. These requirements include service, environmental, and use parameters. Otherwise, it can prematurely fail, causing inconvenience and financial loss.
In order to prevent premature failure, couplings should be properly installed and maintained. A good practice is to refer to the specifications provided by the manufacturer. Moreover, it is important to perform periodic tests to evaluate the effectiveness of the coupling. The testing of couplings should be performed by qualified personnel.
China high quality High Quality Multiple Types/Size Flexible Coupling, Rubber Shaft Coupling with Aluminium Block 205*108 50as Replacement of Many Types of Machine Excavator.   coupling bushingChina high quality High Quality Multiple Types/Size Flexible Coupling, Rubber Shaft Coupling with Aluminium Block 205*108 50as Replacement of Many Types of Machine Excavator.   coupling bushing
editor by CX 2023-04-21

China XL Type Star Elastic Rubber Spider Flexible Shaft Coupling coupling element

Applicable Industries: Building Materials Retailers, Production Plant, Machinery Mend Retailers, Farms, Retail
Construction: Jaw / Spider
Flexible or Rigid: Flexible
Normal or Nonstandard: Normal
Content: Steel
Product title: XL kind adaptable coupling
Variety: XL
Application: Equipment
Packaging Information: carton+ common export wood circumstance
Port: HangZhou/ZheJiang

Composition:Jaw / Spider Versatile or Rigid:Flexible
Standard or Nonstandard:Standard Material:Steel
Brand Title:BC Place of Origin:ZHangZhoug,China
Entire body Content:Stainless Metal Or Metal Floor Treatment method::Blackening
Entire body Material:45# Metal Color::Black
MOQ:1 established Shaft hole:twenty five-one hundred seventy
Dimensions:200-710(mm) Nominal Torque:a hundred twenty five-16000(N.m)
Bore diameter:170(mm) RPM:3800-one thousand(r/m)

Packaging & Delivery
Our Solutions
Company Details
FAQ
Q1. How numerous a long time has your factory been producing this product ?
A: More than 10years.

Q2. The place is your business?

A: In HangZhou.It is 2 several hours away from the HangZhou and ZheJiang port.

Q3. Whats the MOQ?

A: 1pc is alright.

This fall. What is the shipping and delivery time ?

A: It takes 5~7 times if we have in inventory, and normally takes 10-30 days if we should generate.

Q5. What is the bundle ?

A: Neutral packing + Common export picket situation

Q6. What is the payment technique of skoda CZPT corolla Steering Rack Replacement ?

A: T/T, L/C,western union, paypal and so on.

Q7.What is the warranty period of time?

A: According to Countrywide normal of 50 percent a year.

Qeight.The place can you deliver the goods to ?

A: Our quotation is usually FOB ZheJiang or HangZhou. If you have your own forwarder, make sure you notify us in progress.If you need us to produce items to your place or designated place, we will supply freight quotation for you selection.
Qnine.Can you offer free of charge samples ?

A: It depends on the sample price tag. If the minimal price tag, we could provide 1-2pc free of charge sample .
But the freight fee ought to be beared by buyer.

What Is a Coupling?

A coupling is a device used to connect two shafts. It transmits power between them and allows for some misalignment or end movement. There are several types of couplings. The most common ones are gear couplings and planetary couplings. However, there are many others as well.

Transfer of energy

Energy coupling is a process by which two biological reactions are linked by sharing energy. The energy released during one reaction can be used to drive the second. It is a very useful mechanism that synchronizes two biological systems. All cells have two types of reactions, exergonic and endergonic, and they are connected through energy coupling.
This process is important for a number of reasons. The first is that it allows the exchange of electrons and their energy. In a single molecule, this energy transfer involves the exchange of two electrons of different energy and spin. This exchange occurs because of the overlap interaction of two MOs.
Secondly, it is possible to achieve quadratic coupling. This is a phenomenon that occurs in circular membrane resonators when the system is statically deflected. This phenomenon has been gaining a great deal of interest as a mechanism for stronger coupling. If this mechanism is employed in a physical system, energy can be transferred on a nanometer scale.
The magnetic field is another important factor that affects the exchange of energy between semiconductor QWs. A strong magnetic field controls the strength of the coupling and the energy order of the exciton. The magnetic field can also influence the direction of polariton-mediated energy transfer. This mechanism is very promising for controlling the routing of excitation in a semiconductor.
gearbox

Functions

Couplings play a variety of functions, including transferring power, compensating for misalignment, and absorbing shock. These functions depend on the type of shaft being coupled. There are four basic types: angular, parallel, and symmetrical. In many cases, coupling is necessary to accommodate misalignment.
Couplings are mechanical devices that join two rotating pieces of equipment. They are used to transfer power and allow for a small degree of end-to-end misalignment. This allows them to be used in many different applications, such as the transmission from the gearbox to the differential in an automobile. In addition, couplings can be used to transfer power to spindles.

Types

There are two main types of couplings: rigid and flexible. Rigid couplings are designed to prevent relative motion between the two shafts and are suitable for applications where precise alignment is required. However, high stresses in the case of significant misalignment can cause early failure of the coupling. Flexible couplings, on the other hand, allow for misalignment and allow for torque transmission.
A software application may exhibit different types of coupling. The first type involves the use of data. This means that one module may use data from another module for its operation. A good example of data coupling is the inheritance of an object. In a software application, one module can use another module’s data and parameters.
Another type of coupling is a rigid sleeve coupling. This type of coupling has a pipe with a bore that is finished to a specified tolerance. The pipe contains two threaded holes for transmitting torque. The sleeve is secured by a gib head key. This type of coupling may be used in applications where a couple of shafts are close together.
Other types of coupling include common and external. Common coupling occurs when two modules share global data and communication protocols. This type of coupling can lead to uncontrollable error propagation and unforeseen side effects when changes are made to the system. External coupling, on the other hand, involves two modules sharing an external device interface or communication protocol. Both types of coupling involve a shared code structure and depend on the external modules or hardware.
Mechanical couplings are essential in power transmission. They connect rotating shafts and can either be rigid or flexible, depending on the accuracy required. These couplings are used in pumps, compressors, motors, and generators to transmit power and torque. In addition to transferring power, couplings can also prevent torque overload.
gearbox

Applications

Different coupling styles are ideal for different applications, and they have different characteristics that influence the coupling’s reliability during operation. These characteristics include stiffness, misalignment capability, ease of installation and maintenance, inherent balance, and speed capability. Selecting the right coupling style for a particular application is essential to minimize performance problems and maximize utility.
It is important to know the requirements for the coupling you choose before you start shopping. A proper selection process takes into account several design criteria, including torque and rpm, acoustic signals, and environmental factors. Once you’ve identified these parameters, you can select the best coupling for the job.
A gear coupling provides a mechanical connection between two rotating shafts. These couplings use gear mesh to transmit torque and power between two shafts. They’re typically used on large industrial machines, but they can also be used in smaller motion control systems. In smaller systems, a zero-backlash coupling design is ideal.
Another type of coupling is the flange coupling. These are easy to manufacture. Their design is similar to a sleeve coupling. But unlike a sleeve coupling, a flange coupling features a keyway on one side and two threaded holes on the other. These couplings are used in medium-duty industrial applications.
Besides being useful for power transmission, couplings can also prevent machine vibration. If vibration occurs in a machine, it can cause it to deviate from its predetermined position, or damage the motor. Couplings, however, help prevent this by absorbing the vibration and shock and preventing damage to expensive parts.
Couplings are heavily used in the industrial machinery and electrical industries. They provide the necessary rotation mechanism required by machinery and other equipment. Coupling suppliers can help customers find the right coupling for a specific application.
gearbox

Criteria for selecting a coupling

When selecting a coupling for a specific application, there are a number of different factors to consider. These factors vary greatly, as do operating conditions, so selecting the best coupling for your system can be challenging. Some of these factors include horsepower, torque, and speed. You also need to consider the size of the shafts and the geometry of the equipment. Space restrictions and maintenance and installation requirements should also be taken into account. Other considerations can be specific to your system, such as the need for reversing.
First, determine what size coupling you need. The coupling’s size should be able to handle the torque required by the application. In addition, determine the interface connection, such as straight or tapered keyed shafts. Some couplings also feature integral flange connections.
During the specification process, be sure to specify which materials the coupling will be made of. This is important because the material will dictate most of its performance characteristics. Most couplings are made of stainless steel or aluminum, but you can also find ones made of Delrin, titanium, or other engineering-grade materials.
One of the most important factors to consider when selecting a coupling is its torque capability. If the torque rating is not adequate, the coupling can be damaged or break easily. Torque is a major factor in coupling selection, but it is often underestimated. In order to ensure maximum coupling performance, you should also take into consideration the size of the shafts and hubs.
In some cases, a coupling will need lubrication throughout its lifecycle. It may need to be lubricated every six months or even once a year. But there are couplings available that require no lubrication at all. An RBI flexible coupling by CZPT is one such example. Using a coupling of this kind can immediately cut down your total cost of ownership.
China XL Type Star Elastic Rubber Spider Flexible Shaft Coupling     coupling elementChina XL Type Star Elastic Rubber Spider Flexible Shaft Coupling     coupling element
editor by czh